Lecture 22 Proofs of Sylow theorems

Throughout, \(G \) denotes a finite group and \(p \) a prime.

Cauchy's theorem: If \(p \mid |G| \), there is an element of order \(p \).

Proof: see book.

1st Sylow theorem If \(p^n \mid |G| \), there is a subgroup \(H \leq G \) with \(|H| = p^n \).

Proof: Induction on \(n \). The case \(n=1 \) is Cauchy's theorem (let \(H = \langle g \rangle \) where \(g \) has order \(p \)).

So suppose \(p^n \mid |G| \), \(n > 1 \). By induction hypothesis, there is a subgroup \(H \leq G \) with \(|H| = p^{n-1} \). Since \(p^n \mid |G| \), we have \(p \mid |G|/|H| = |G:H| \).

Now consider the action of \(H \) on \(G/H \) by left multiplication:
\[H \times (G/H) \rightarrow G/H \]
\[h \cdot aH = (ha)H. \]

Because orbits are a partition,
\[[G:H] = \# \text{ of singleton orbits} + \sum (\text{size of nonsingleton orbits}) \]

Now \(|H \cdot aH| = |H|/[\text{stab}(aH)] = p^{n-1} \) is a power of \(p \),

so the size of a non-singleton orbit is divisible by \(p \).

Since \(p \mid [G:H] \) and \(p \mid (\text{size of a nonsingleton orbit}) \), we find \(p \mid \# \text{ of singleton orbits} \).
There is always at least one singleton orbit, for
\[H \cdot (aH) = \{ aH \} \]
So in fact the number of singleton orbits is divisible by \(p \)

What does it mean that \(H \cdot (aH) = \{ aH \} \) ?
\[\iff h \in H \iff a^{-1}ha \in H \forall h \in H \]
\[\iff H = aHa^{-1} \iff a \in N_a(H). \]

We now know that there is \(a \neq H \) such that \(H \cdot (aH) = \{ aH \} \)
So we know there is \(a \in H \) such that \(a \in N_a(H) \)
Thus \(N_a(H) \not\subseteq H \).
The number of singleton orbits is \([N_a(H):H]\), which is divisible
by \(p \).

Since \(H \) is normal in \(N_a(H) \), we can form \(N_a(H)/H \) which
is a group, and \(p \mid [N_a(H):H] \) By Cauchy's theorem,
there is a subgroup \(K \leq N_a(H)/H \) of order \(p \).
Let \(H' = \pi^{-1}(K) \) \((\pi : N_a(H) \rightarrow N_a(H)/H) \)
Then \(H' \) has order \(p \cdot |H'| = p \cdot p^{n-1} = p^n. \]

2nd Sylow theorem \(\) Let \(H \leq G \) be a subgroup of order \(p^n \),
and let \(P \) be a \(p \)-Sylow subgroup (of order \(p^n \), \(n \geq s \)).
Then there is an \(a \in G \) such that \(aHa^{-1} \leq P \).

Proof \(\) Let \(X = \{ aPa^{-1} \mid a \in G \} \) be the set of conjugates of \(P \).
Claim \(p \) does not divide \(|X| \):
By orbit-stabilizer, \[|X| = \frac{|G|}{|N_a(P)|} \]
\(p^n \mid |N_a(P)| \), since \(p^n \) is the largest power of \(p \) that divides \(|G| \),
\[\frac{|G|}{|N_a(P)|} \] has no powers of \(p \) in its prime factorization.
Now let H act on X by conjugation.
A nonsingleton orbit has size divisible by p (since it divides $|H|=p^s$).
Since $|X|$ is not divisible by p, there must be a singleton orbit.
That is, for some $g \in G$, $H \leq N_a(gP_{a^{-1}}) = gN_a(p)g^{-1}$.

Thus $g^{-1}Hg \leq N_a(P)$. Need to show $g^{-1}Hg \leq P$.

Let $\tilde{H} = g^{-1}Hg$.

Applying the diamond isomorphism theorem to \tilde{H},
we find $\frac{|\tilde{H}P|}{|\tilde{H}|} = \frac{|P||H|}{|\tilde{H}P|}$.

The right hand side only involves powers of p, so $|\tilde{H}P| = p^n$ for some n.

Since $P \leq H \leq \tilde{HP} \leq G$, $|P||\tilde{H}P| \leq 161$,
$p^n | p^{\alpha} | 161$.

By maximality of p-Sylow subgroup, $n = m$ and $\tilde{H}P = P$ and $H \leq P$.

3rd Sylow Theorem: Let p^n be the order of a p-Sylow subgroup P, and let n_p be the number of p-Sylow subgroups.
Then $n_p \equiv 1 \pmod{p}$ and $n_p | 161/p^n$.

Proof Let X be the set of p-Sylow subgroups. G acts transitively on X by 2nd Sylow theorem. If we consider P acting on X by conjugation, there is a fixed point $P \in X$:

$P \cdot P = \{gPg^{-1} | g \in \text{P}\} = \{\text{P}\}$

There are no other fixed points, for if $P \cdot Q = \{Q\}$,
then $P \leq N_a(Q)$, and by the argument in the previous proof this implies $P \leq Q$, so $P = Q$ since both have p^n elements.
So there is only one singleton orbit. Every nonsingleton orbit has size \(|\phi(Q)| = |P|/\text{stab}_P(Q)|\), which is a power of \(p\), so divisible by \(p\). Thus
\[n_p = |X| = kp + 1 \quad \text{so} \quad n_p \equiv 1 \pmod{p} \]

Since \(G\) acts transitively on \(X\),
\[n_p = |X| = |G : P| = |G|/|N_G(P)| \quad [G : N_G(P)] \]

Now
so
\[n_p \mid [G : P] = |G|/|P| \]