Lecture 2

Last lecture: the set of symmetries of $\mathbb{R} \times \mathbb{R}^3$ forms a "group." Now look at another fundamental example.

2) **Permutations**: reordering a set of objects.

\[
\begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
1 & 2 & 3 & 4 \\
\end{array}
\begin{array}{c}
\downarrow \\
\downarrow \\
\bullet & \bullet & \bullet & \bullet \\
1 & 2 & 3 & 4 \\
\end{array}
\begin{array}{c}
1 \mapsto 2 \\
2 \mapsto 3 \\
3 \mapsto 1 \\
4 \mapsto 4 \\
\end{array}
\]

Definition: A **permutation** of a finite set F is a bijection $\pi: F \to F$.

Recall: A function $f: X \to Y$ is a bijection \iff there is an inverse function $f^{-1}: Y \to X$

$\iff f$ is both injective (one-to-one) and surjective (onto)

i) f is **injective** iff $(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$

ii) f is **surjective** iff $(\forall y \in Y, \exists x \in X \text{ s.t. } f(x) = y)$
Useful fact: When $F = X = Y$ is a finite set, a function $\pi : F \to F$ is bijective \iff it is surjective \iff it is injective.

For any finite set F, we can always number the elements $1, 2, \ldots, n = |F|$. In studying permutations we might as well assume that $F = \{1, 2, 3, \ldots, n\}$.

Then a notation for a bijection $\pi : F \to F$ is

$\pi = \begin{pmatrix} 1 & 2 & 3 & \ldots & n \\ a_1 & a_2 & a_3 & \ldots & a_n \end{pmatrix}$ where $a_i \in \{1, 2, \ldots, n\}$

This means that $\pi(1) = a_1$, $\pi(2) = a_2$, $\pi(i) = a_i$ and so on.

Fact: Composition of bijections is a bijection.

(composition of permutations is a permutation)

Example:

$\pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$ $\pi_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$

$\pi_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$

$\pi_2 \circ \pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$
Cycle notation: if $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 1$, we could write $\underline{1 \rightarrow 2 \rightarrow 3}$ a cycle of length 3.

We write (123) for this cycle. This is another notation for permutations.

$$\pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & \end{pmatrix} = (123)(4) = (123) = (231) = (312)$$

$$\pi_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & \end{pmatrix} = (13)(24) = (31)(42) = (24)(13)$$

Notation is not unique!

$$\pi_2 \circ \pi_1 = (13)(24)(123) = (142)(3) = (142) \leftrightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & \end{pmatrix}$$

Another such problem: $n = 5$.

$$\pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} = (12345)$$

$$\pi_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix} = (124)(35)$$

$$\pi_2 \circ \pi_1 = (124)(35)(12345) = (143)(25) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$$

$$\pi_1 \circ \pi_2 = (12345)(124)(35) = (13)(254) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}$$

Composition of permutations is not commutative! $\pi_1 \circ \pi_2 \neq \pi_2 \circ \pi_1$, sometimes.
Definition: Denote by S_n the set of permutations of $F = \{1, 2, \ldots, n\}$.

Lemma: The number of elements of S_n is $n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$.

Proof: $(1 \ 2 \ 3 \ \cdots \ n)$ n choices for a_1,

$\begin{pmatrix} a_1 & a_2 & a_3 & \ldots & a_n \end{pmatrix}$ $n-1$ choices for a_2,

$n-2$ choices for a_3,

\vdots

1 choice for a_n.

In total we have $n(n-1)(n-2)\cdots 2 \cdot 1$ possibilities.

Example: S_3 has 6 elements.

$S_3 = \{I, (12), (13), (23), (123), (321)\}$

Note: $(21) = (12)$

$(123) = (231) = (312)$

$(31) = (13)$

$(321) = (213) = (132)$

$(32) = (23)$
Special types of permutations in S_n:

(i) Identity permutation: $I = (1)(2)\cdots(n)$ does nothing.

(ii) Transposition: $\pi = (ab)$, $a \mapsto b \mapsto a$.

Swaps a and b and that's all.

(iii) Cycle of length k: $\pi = (a_1a_2\cdots a_k)$

\[
\begin{array}{cccc}
 a_1 & \mapsto & a_2 & \mapsto \cdots & \mapsto & a_k \\
\end{array}
\]

Cyclically permutes a_1, a_2, \ldots, a_k and that's all.

Note: 1-cycle = Identity
2-cycle = transposition.

Example: In S_3, there are only cycles.

In S_4, there are other elements:

\[
(12)(24), \ (14)(23), \ (12)(34)
\]

In S_5, can also have

\[
(12)(345), \ etc.
\]

Consider two cycles $(a_1a_2\cdots a_k), (b_1b_2\cdots b_k)$.

They are disjoint if none of the a's equals any of the b's.

Eg. (123) and (456) are disjoint.

(142) and (35) are disjoint.

(123) and (345) are not disjoint (b/c 3).
Proposition 1: Every $\pi \in S_n$ can be written as a product of disjoint cycles, in a way that is essentially unique (unique up to order of the factors).

Proof: $\pi = (1 \ 2 \ \cdots \ n) \
\begin{pmatrix} a_1 \ a_2 \ \cdots \ a_n \end{pmatrix}$

Look at sequence $1, \pi(1), \pi^2(1) = \pi(\pi(1)), \pi^3(1), \ldots$
 Eventually the sequence comes back to 1: $\pi^k(1) = 1$ (choose smallest such k)
 So π contains the k-cycle $(1 \ \pi(1) \ \pi^2(1) \ \cdots \ \pi^{k-1}(1))$

Next choose some $a \in \{1, \ldots, n\}$ that does not appear so far, and consider $a, \pi(a), \pi^2(a), \ldots$.
 Eventually this comes back to a: $\pi^l(a) = a$.
 So π contains the l-cycle $(a \ \pi(a) \ \pi^2(a) \ \cdots \ \pi^{l-1}(a))$

Keep repeating this process until all elements $a \in \{1, \ldots, n\}$ have been accounted for.

Example: $(124)(5432) = (125)(34)$

Note: If π_1 and π_2 are disjoint cycles, then $\pi_1 \pi_2 = \pi_2 \pi_1$, (they commute)

Eg. $(125)(34) = (34)(125)$
Proposition 2: Every $\pi \in S_n$ can be written as a product of transpositions (in several ways). For a given π, the number of transpositions appearing in such a factorization is always either even or odd.

Proof of first part: π can be written as a product of cycles by Prop. 1, so we just need to show that a cycle can be written as a product of transpositions.

Look at:

$$(a_1a_2\cdots a_k) = (a_{k-1}a_k)(a_{k-2}a_k)\cdots(a_2a_k)(a_1a_k)$$

Proof of second part is omitted. □

Example:

$\pi = (124)(5432) = (24)(14)(32)(42)(52)$

$= (125)(34) = (25)(15)(34)$

$= (125)(324) = (25)(15)(24)(34)$

$q = 5\text{ transp.}$

$= 3\text{ transp.}$ Permutation.

$\pi = 4\text{ transp.}$ Even permutation.

Definition: the sign of a permutation π is

$$\text{sgn}(\pi) = \begin{cases} +1 & \pi \text{ is even} \\ -1 & \pi \text{ is odd} \end{cases}$$
Example: \[\text{sgn}(I) = 1 \quad \text{sgn}(\text{cab}) = -1 \]

\[\text{sgn}(\{a_1, a_2, \ldots, a_k\}) = (-1)^{k-1} \]

If \(\pi = (a_1 \ldots a_k) \) is a cycle, the inverse is \(\pi^{-1} = (a_k a_{k-1} \ldots a_2 a_1) \).

E.g. \(\pi = (4215) \Rightarrow \pi^{-1} = (5124) = (1245) \).

If \(\pi \) is a product of cycles, then \(\pi^{-1} \) is the product of the inverse cycles in the reverse order.

\[
\pi = (a_1 \ldots a_k)(b_1 \ldots b_l) \ldots (z_1 \ldots z_r)
\]
\[
\pi^{-1} = (z_r \ldots z_1) \ldots (b_l \ldots b_1)(a_k \ldots a_1)
\]

\[
\pi \circ \pi^{-1} = (a_1 \ldots a_k)(b_1 \ldots b_l) \ldots (z_1 \ldots z_r)(z_r \ldots z_1) \ldots (b_l \ldots b_1)(a_k \ldots a_1)
\]

Thus \(S_n \) is a group. \(S_n = \{ \text{permutations of } \{1, \ldots, n\} \} \)

operation = composition, which is

(i) Associative: \((\pi_1 \circ \pi_2) \circ \pi_3 = \pi_1 \circ (\pi_2 \circ \pi_3) \)

(ii) has Identity: \(\pi \circ \text{I} = \text{I} \circ \pi = \pi \)

(iii) has Inverses: \(\pi \circ \pi^{-1} = \pi^{-1} \circ \pi = \text{I} \).