Integrating differential forms

Step 0 \(U = [0,1]^n \subset \mathbb{R}^n \)

\[\alpha = f(x) \, dx^1 \wedge \ldots \wedge dx^n \]

\[\int_U \alpha = \int_{\square} \cdots \int_{\square} f(x_1', \ldots, x_n') \, dx_1' \wedge \ldots \wedge dx_n' . \]

A) **Pullback.** \(\mathcal{F} : M \rightarrow N \)

\(\alpha \in \Lambda^k(N) \)

\[\Lambda^k(N) \ni (\mathcal{F}^\ast \alpha)(V_1, \ldots, V_k) = \alpha((\mathcal{F}^\ast \alpha)(\mathcal{F}_* V_1, \ldots, \mathcal{F}_* V_k)) \]

Ex \(\mathcal{F} : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \)

\((x^1, x^2) \mapsto (x^1 - x^2, x^2 - x^1, (x^1)^2)\)

\(\alpha(y) = \sqrt{y^1} \, dy^1 \wedge dy^3 \in \Lambda^2(\mathbb{R}^3)\)

\((\mathcal{F}^\ast \alpha)(\alpha) = \sqrt{x^1 - x^2} \, d(x^1 - x^2) \wedge d((x^1)^3)\)

\[= \sqrt{x^1 - x^2} \left[(dx^1 - dx^2) \wedge (3(x^1)^2 \, dx^1) \right] \]

\[= -\sqrt{x^1 - x^2} \, 3(x^1)^2 \, dx^2 \wedge dx^1 \]
\[\omega = \sqrt{x^1 - x^2} \, (3A^1)^2 \, dx^1 \wedge dx^2. \]

Ex \(\gamma_i : (0, 1) \rightarrow \mathbb{R}^n \)

\[t \mapsto (\gamma_1(t), \ldots, \gamma_n(t)) \]

\[\kappa(\omega) = \sum a_i \, \omega_i \, dx^i \]

\[(\gamma^\ast \kappa)(t) = \sum a_i (\gamma_i(t)) \, d(\gamma_i(t)) \]

\[= \sum a_i (\gamma_i(t)) \, \frac{d\gamma_i(t)}{dt} \, dt \]

\[= \left[\sum a_i (\gamma_i(t)) \, dx^i \right] \left(\sum \frac{d\gamma_i(t)}{dt} \frac{\partial}{\partial x^i} \right) \, dt \]

\[= \kappa(\gamma(t)) \, (\dot{\gamma}(t)) \, dt. \]

So

\[\int_{\gamma} \kappa = \int_{0}^{1} \kappa(\gamma(t)) \, (\dot{\gamma}(t)) \, dt = \int_{a}^{b} \gamma^\ast(\kappa) \]

Step 1
Given \(\omega \in \Lambda^k(M) \) and a smooth map

\[\gamma : [0, 1]^k \rightarrow M \]

(singular \(k \)-cube)

\[\int_{\gamma} \omega = \int_{[0, 1]^k} \gamma^\ast \omega \quad \text{as defined in Step 0}. \]
Now suppose UCM and $U = \gamma([0,1]^n)$ for some $\gamma: [0,1]^n \to M$ which is smooth and 1-1.

Q. Does it make sense to define $\int_U \omega = \int_{\partial U}$?

A. NO. There is a sign problem.

Example: $M = S^1$, $U = \{x \in S^1 \mid x^2 \geq 0\}$

\[\gamma_1: [0,1] \to S^1 \]
\[s \mapsto (\cos(\pi s), \sin(\pi s)) \]

\[\gamma_2: [0,1] \to S^1 \]
\[s \mapsto (\cos(\pi(1-s)), \sin(\pi(1-s))) \]

$\gamma_1([0,1]) = U = \gamma_2([0,1])$

Exercise: For any 1-form α on S^1, $\int_{\gamma_1} \alpha = -\int_{\gamma_2} \alpha$.
We need a way to consistently choose b/w signs.

B) Orientations

Let $\alpha = \{e_1, \ldots, e_n\}$ and $\beta = \{f_1, \ldots, f_n\}$ be basis for V.

$[\text{Id}_V]_\alpha^\beta$ is an invertible matrix.

$$(([\text{Id}_V]_\alpha^\beta)^{-1} = [\text{Id}_V]_\beta^\alpha)$$

Def: $\alpha \sim \beta$ iff $\det ([\text{Id}_V]_\alpha^\beta) > 0$

Ex: $V = \mathbb{R}^2$

$\alpha = \{ (1,0) , (0,1) \}$

$\beta = \{ (0,1) , (1,0) \}$

$\gamma = \{ (1,1) , (1,-1) \}$

$[\text{Id}]^\alpha_\alpha = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ so $\alpha \not\sim \beta$.

$[\text{Id}]^\gamma_\alpha = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$ so $\alpha \not\sim \gamma$.

$[\text{Id}]^\gamma_\beta = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$ so $\beta \sim \gamma$.
Fact. For any \(V \) there are exactly 2 equivalence classes of bases \(\{+, -\} \).

Def. An orientation of \(V \) is a choice of one equivalence class of bases \((+) \).

Let \((U, \phi)\) and \((V, \psi)\) be charts on \(M \).

Def. \((U, \phi)\) and \((V, \psi)\) are orientation compatible if either \(U \cap V = \emptyset \) or if:

\[
\det \left(\begin{bmatrix} (\psi \circ \phi^{-1})_* & \frac{\partial \psi}{\partial \phi} \frac{\partial \phi}{\partial x} \end{bmatrix} \right) > 0
\]

for all \(x \in \phi(U \cap V) \).

Ex. \(M = S^1 \) \((U_1^+, \phi_1^+) \) \((U_2^+, \phi_2^+) \)

\[
\begin{array}{c}
\end{array}
\]
\[\phi_2^+ \cdot (\phi_1^+)^{-1} (x^i) = \phi_2^+ \left(\sqrt{1-(x^i)^2}, x^i \right) \]
\[= \frac{2}{\partial x^i} \left(\sqrt{1-(x^i)^2} \right) \]
\[= \frac{-x^i}{\sqrt{1-(x^i)^2}} < 0 \]

So not orientation compatible.

Ex: Change \(\phi_2^+ \) to \(\tilde{\phi}_2^+ (x^i, x^s) = -x^i \).

Then \((U_1^+, \phi_1^+) \) and \((U_2^+, \tilde{\phi}_2^+) \) are orientation compatible.

Def: \(M \) is orientable if it admits an atlas \(\mathcal{A} = \{ (U_{\alpha}, \phi_{\alpha}) \}_{\alpha \in \mathcal{A}} \) such that any two charts in \(\mathcal{A} \) are orientation compatible.

Such an atlas is said to be orienting.
Rank Not all manifolds are orientable!

ex \mathbb{RP}^2 is not orientable

Def If A and B be orienting atlases for M, $A \sim B$ if every pair of charts $(U, \phi) \in A$

and $(V, \psi) \in B$ are orientation compatible.

Fact If M is orientable it has exactly two equivalence classes of orienting atlases.

Def An orientation on an orientable manifold is a choice of one of these equivalence classes.

Def M oriented. (U, ϕ) is positively oriented if it belongs to an oriented atlas in the chosen equivalence class.
\[M = \mathbb{R}^n \]

\[A = \{(\mathbb{R}^n, \text{Id}_{\mathbb{R}^n})\} \text{ is an orienting atlas.} \]

\[B = \{(\mathbb{R}^n, -\text{Id}_{\mathbb{R}^n})\} \text{ is an orienting atlas.} \]

\[A \sim B \iff n \text{ is even} \]

\[\text{det} \left[(-\text{Id}_{\mathbb{R}^n}) \cdot (\text{Id}_{\mathbb{R}^n})^{-1} \right] = \text{det} (-\mathbb{I}_n) = (-1)^n. \]

Ref: Suppose \(M \) is oriented. \(\gamma: [0,1]^n \to M \) is positively oriented if \(\text{det} \left[(\phi \circ \gamma)_* \right] \) for any positively oriented chart on \((U,d) \) in \(M \) (with \(U \cap \gamma([0,1]^n) \neq \emptyset \)).