Finiteness theorem for \(M(X) \) and weak Riemann Roch.

Let \(X \) be a compact Riemann surface. \(X \) is algebraic so there is a nonconstant meromorphic function \(f \in M(X) \). The subfield generated by \(C \) and \(f \) is \(C(f) \subseteq M(X) \). Now \(f \) is transcendental over \(C \) (since \(C \) is algebraically closed) so \(C(f) \) is isomorphic to \(C(\infty) \), the field of rational functions.

We can also regard \(f \) as defining a map \(F : X \to \mathbb{C} \). Let \(d = \deg F = \deg (\operatorname{div} \alpha(f)) \) be the degree of this map. The subfield \(C(f) \subseteq M(X) \) is equal to \(\{ F^k g \mid g \in M(\mathbb{C}\infty) = C(\infty) \} \).

Theorem \(M(X) \) is a finite extension of \(C(f) \), whose degree is \[
\left[M(X) : C(f) \right] = \deg (\operatorname{div} \alpha(f))
\]

The proof is broken into several propositions. The starting point is the estimate: If \(D \geq 0 \), then \(\ell(D) \leq \deg D + 1 \). \(\ell(D) = \dim L(D) \).

Proposition \(M(X) \) is algebraic over \(C(f) \).

Proof: If not, then there is some \(g \in M(X) \) which is transcendental over \(C(f) \). Thus \(f \) and \(g \) are algebraically independent over \(C \). There is some nonnegative divisor \(D \) such that \(f, g \in L(D) \) \(\left(\text{e.g. } D = \max(\operatorname{div} f, \operatorname{div} g) \right) \). Then \(f^i g^j \in L(nD) \) if \(i+j \leq n \).
Since f, g algebraically independent, $\{ f^i g^j \}_{i,j}$ are linearly independent. So $L(nD) \geq \# \{ f^i g^j \mid i \geq 0, j \geq 0, i + j \leq n \} = \frac{(n+1)(n+2)}{2}$.

On the other hand, $L(nD) \leq \deg (nD) + 1 = n \deg D + 1$.

So $\frac{(n+1)(n+2)}{2} \leq n \deg D + 1$ for $n > 0$.

This is absurd since the left-hand side grows quadratically, and the right-hand side grows linearly.

Lemma: Let $A \in \text{Div}(X)$, and let $D = \text{div}_n(f)$ for $f \in M(X) \setminus C$. Then there exists $m > 0$ and $g \in M(X)$ such that $A - \text{div}(g) \leq mD$.

Moreover, g can be taken to be $r(f)$ where $r \in \mathbb{C}[t]$.

Proof: Let p_1, \ldots, p_k be the points with $A(p_i) \geq 1$ and that are not poles of f. Then $f(p_i) \in \mathbb{C}$ and we may form

$$g = \prod_{i=1}^{k} \left(f - f(p_i) \right)^{A(p_i)}$$

Then $A - \text{div}(g)$ is positive only at the poles of f.

So $A - \text{div}(g) \leq mD$ for some $m > 0$.

Corollary: Let $f, h \in M(X) \setminus C$. Then there exists $r \in \mathbb{C}[t]$ such that $r(f)h$ has no poles outside the poles of f.

And there exists m such that $r(f)h \in L(mD)$, where $D = \text{div}_n(f)$.

Proof: Apply lemma with $A = -\text{div}(h)$.

Then $A - \text{div}(r(f)) \geq mD$ which means $\text{div}(h) + \text{div}(r(f)) \geq -nD$. \(\square\)
Lemma
Let \(f \in \mathcal{M}(X) \setminus \mathbb{C} \), \(D = \text{div}_{\text{loc}}(f) \). Suppose \([\mathcal{M}(X) : \mathcal{C}(f)] \geq k\). Then \((\exists m_0) (\forall m \geq m_0) (\ell(mD) \geq (m-m_0+1)k)\)

[i.e., Growth rate of \(\ell(mD) \) is a least linear of slope \(k \).]

Proof
Take \(g_1, \ldots, g_k \in \mathcal{M}(X) \) linearly independent over \(\mathcal{C}(f) \). By corollary, take \(r_i \in \mathbb{C}[t] \) s.t. \(h_i := r_i(f)g_i \) has poles only at poles of \(f \). Then \(h_i \) are lin. indep. over \(\mathcal{C}(f) \) also. \(\exists m_0 \) s.t. \(\forall i \ h_i \in \ell(m_0D) \)

For \(m \geq m_0 \), \(f_i h_j \in \ell(mD) \) if \(i + m_0 \leq m \), since \(f \in \ell(D) \). These are lin. indep. over \(\mathcal{C} \), so \(\ell(mD) \geq \# \{ f_i h_j \mid 0 \leq i \leq m-m_0, 1 \leq j \leq k \} = (m-m_0+1)k \). \(\square \)

Proposition
\([\mathcal{M}(X) : \mathcal{C}(f)] \leq \text{deg} \ D \)
(Where \(D = \text{div}_{\text{loc}}(f) \))

Proof:
If \([\mathcal{M}(X) : \mathcal{C}(f)] \geq \text{deg} \ D + 1 \), then by lemma \(\ell(mD) \geq (m-m_0+1)(\text{deg} \ D + 1) = (\text{deg} \ D + 1)m + \text{const} \). But also \(\ell(mD) \leq m \text{deg} \ D + 1 = (\text{deg} \ D)m + \text{const} \). For large \(m \), these inequalities contradict each other. \(\square \)

Proposition
\([\mathcal{M}(X) : \mathcal{C}(f)] \geq \text{deg} \ D \)
(\(D = \text{div}_{\text{loc}}(f) \))

(This proposition completes the proof of the theorem.)

Proof:
Write \(D = \sum_{i=1}^{k} n_i p_i \), \(n_i \geq 1 \).

For \(i = 1, \ldots, k \), \(j = 1, \ldots, n_i \), let \(g_{i,j} \in \mathcal{M}(X) \) have pole of order \(j \) at \(p_i \), and no poles or zeros at other \(p_i \). (Laurent series approx.)
The number of these functions is \(\sum_{i=1}^{k} n_i = \deg D \), so it suffices to show \(\xi, g_{ij} \) are lin. indep. \(i \neq j \) over \(C(f) \).

Suppose \(\sum c_{ij}(f) g_{ij} = 0 \) is a \(C(f) \)-linear relation.

By clearing denominators, we may assume \(c_{ij}(f) \in C[t] \).

The only poles of \(c_{ij}(f) \) are at \(p_1, \ldots, p_k \), and
\[
\text{ord}_{p_k}(c_{ij}(f)) = n_k \cdot \deg c_{ij}.
\]

Look at the terms where \(\deg c_{ij} \) is maximal, and among those, choose one such that \(j \) is maximal.
This term is \(c_{i_0j_0}(f) g_{i_0j_0} \) for some \((i_0, j_0) \). WLOG \(i_0 = 1 \).

Now divide through by \(c_{1j_0}(f) f) \) to get \(\sum d_{ij}(f) g_{ij} = 0 \)
with \(d_{1j_0} = 1 \). All \(d_{ij}(f) \) have \(\text{ord}_{p_k}(d_{ij}(f)) \geq 0 \)
because \(\deg c_{ij} \) was maximal, and also \(n_k | \text{ord}_{p_k}(d_{ij}(f)) \).

Now take \(\text{ord}_{p_1} \) of the terms in the relation.
If \(i \neq 1 \), \(\text{ord}_{p_1}(d_{ij}(f) g_{ij}) \geq 0 \)
For \(i = 1 \), \(\text{ord}_{p_1}(d_{1j}(f) g_{1j}) = \text{ord}_{p_1}(d_{1j}(f)) + \text{ord}_{p_1}(g_{1j}) = \text{ord}_{p}(d_{1j}(f)) - j \)
Since \(\text{ord}_{p}(d_{1j}(f)) \) is a multiple of \(n_1 \) and \(1 \leq j \leq n_1 \),
This term has negative order iff \(d_{1j}(f) \) is a constant.
There is such a term, namely \(d_{1j_0}(f) g_{1j_0} = g_{1j_0} \) with \(\text{ord} - j_0 \)
By construction, \(\mathcal{M} \) is maximal subject to this property, so there can be no other term that can cancel this pole of order \(-\mathcal{M} \) at \(p_1 \). This contradicts the linear relation that was assumed.

Back to \(H^1(D) \) and Riemann-Roch

\[
\mathcal{M} = \mathcal{M}(x)
\]

\[
R = \left\{ r = (r_p)_{p \in X} \mid r_p \in \mathcal{M}, \quad \text{ord}_p(r) > 0 \text{ for all but finitely many } p \right\}
\]

\[
L(D) = \left\{ f \in \mathcal{M} \mid \forall p \quad \text{ord}_p(f) + D(p) \geq 0 \right\}
\]

\[
R(D) = \left\{ r \in R \mid \forall p \quad \text{ord}_p(r_p) + D(p) \geq 0 \right\}
\]

\[
\alpha : \mathcal{M} \to R, \quad \alpha(f) = r \quad \text{ s.t. } r_p = f \text{ for all } p.
\]

\[
\alpha_D : \mathcal{M} \to R/R(D), \quad H^0(D) = \ker \alpha_D = L(D)
\]

\[
H^1(D) = \text{coker } \alpha_D = R/(R(D) + \alpha(M))
\]

We have exact sequence for any \(D \):

\[
0 \to \mathcal{M}/L(D) \to R/R(D) \to H^1(D) \to 0
\]

Suppose \(D_1 \leq D_2 \) then \(L(D_1) \leq L(D_2) \) \(R(D_1) \leq R(D_2) \)

So we have diagram

\[
\begin{array}{ccc}
0 & \to & \mathcal{M}/L(D_1) \to & R/R(D_1) \to & H^1(D_1) \to & 0 \\
& & \downarrow & & \downarrow & \\
0 & \to & \mathcal{M}/L(D_2) \to & R/R(D_2) \to & H^1(D_2) \to & 0
\end{array}
\]

where vertical maps are all surjective.
Hence we have a short exact sequence of the kernels

$$0 \rightarrow L(D_2)/L(D_1) \rightarrow R(D_2)/R(D_1) \rightarrow H^1(D_1/D_2) \rightarrow 0$$

where \(H^1(D_1/D_2) := \ker (H^1(D_1) \rightarrow H^1(D_2)) \)

\(\dim L(D_2)/L(D_1) = \ell(D_2) - \ell(D_1) \)

\(\dim R(D_2)/R(D_1) = \deg(D_2) - \deg(D_1) \), this is because all that matters are the coefficients of \(\ell_p \) in degrees between \(D_1(p) \) and \(D_2(p) \).

Conclusion: \(H^1(D_1/D_2) \) is finite dimensional and \(\deg(D_2) - \deg(D_1) = \ell(D_2) - \ell(D_1) + \dim H^1(D_1/D_2) \)

Theorem: For any divisor \(D \), \(H^1(D) \) is finite dimensional.

Proof: Next time.

Corollary: \(\dim H^1(D_1/D_2) = \dim H^1(D_1) - \dim H^1(D_2) \)

Write \(h^1(D) := \dim H^1(D) \).

Corollary: If \(D_1 \leq D_2 \), \(\deg(D_2) - \deg(D_1) = \ell(D_2) - \ell(D_1) + h^1(D_1) - h^1(D_2) \)

or \(\deg D_2 - \ell(D_2) + h^1(D_2) = \deg D_1 - \ell(D_1) + h^1(D_1) \)

Since any two divisors are comparable to a third, we find that \(\deg D - \ell(D) + h^1(D) \) is constant overall divisors \(D \) on \(X \).
In particular, it takes the same value for D as it does for 0. \[\deg 0 - \ell(0) + h'(0) = h'(0) - 1 \]

Proposition (Weak Riemann-Roch) for any $D \in \text{Div}(X)$

\[\ell(D) - h'(D) = \deg D + 1 - h'(0) \]

Where we have yet to prove $H^1(D)$ is finite-dimensional.